Increased Speed, More Options for dashDB for Analytics with Pay-As-You-Go and Bluemix Lift

by Ben Hudson

Harnessing the power of IBM dashDB for Analytics just got quicker and easier. We’re excited to introduce two new and improved ways to connect to the cloud for in-memory processing; RStudio and Cloudant integrations; in-database analytics; and other powerful features that will reduce your time to market:

  1. Pay-As-You-Go (PayGo) provisioning: Starting today, you can purchase dashDB for Analytics directly in Bluemix using your credit card*.  We’ll start provisioning your system right away, accelerating your time to value.
  2. Bluemix Lift: Now you can move your on-premises data stores into a dashDB instance even faster. Bluemix Lift, IBM’s newest data movement solution, accelerates data migration by up to 10 times versus traditional options, with the flexibility of both PayGo and subscription plans to meet your data needs.  Check the details out here.

You can also purchase dashDB for Analytics through a Bluemix subscription.  Try it out today!

About Ben,

ben-hudsonBen Hudson is an Advisory Offering Manager for IBM dashDB for Analytics. He recently obtained his Master’s degree in Computer Science from Wesleyan University in Middletown, CT.

 

*Note: dashDB for Analytics MPP Small for AWS is not available as a PayGo plan.

 

Why Are Customers Architecting Hybrid Data Warehouses?

By Mona Patel

As a leader in IT, you may be  incented or mandated to explore cloud and big data solutions to transform rigid data warehousing environments into agile ones to match how the business really wants to operate.  The following questions must come to mind:

  • How do I integrate new analytic capabilities and data sets to my current on-premises data warehouse environment?
  • How do I deliver self service solutions to accelerate the analytic process?
  • How do I leverage commodity hardware to lower costs?

For these questions, and more, organizations are architecting hybrid data warehouses.  In fact, these organizations moving towards hybrid are referred to as ‘Best In Class’ according to The Aberdeen Group’s latest research: “Best In Class focus on hybridity, both in their data infrastructure and with their analytical tools as well.  Given the substantial investments companies have made in their IT environment, a hybrid approach allows them to utilize these investments to the best of their ability while explore more flexible and scalable cloud-based solutions as well.”  To hear more about these ‘Best In Class’ organizations, watch the 45 minute webcast.

How do you get to this hybrid data warehouse architecture with the least risk and most reward?  IBM dashDB delivers the most flexible, cloud database services to extend and integrate with your current analytics and data warehouse environment, addressing all the challenges related to leveraging new sources of customer, product, and operational insights to build new applications, products, and business models.

To help our clients evaluate hybrid data warehouse solutions, Harvard Research Group (HRG) provides an assessment of IBM dashDB.  In this paper, HRG highlights product functionality, as well as 3 uses cases in Healthcare, Oil and Gas, and Financial Services.   Security, Performance, High Availability, In-Database Analytics, and more are covered in the paper to ensure future architecture enhancements optimize IT rather than adding new skills, complexities, and integration costs. After reading this paper, you will find that dashDB enables IT to respond rapidly to the needs of the business, keep systems running smoothly, and achieve faster ROI.

To know more on dashDB check out the video below:

 

About Mona,

mona_headshotMona Patel is currently the Portfolio Marketing Manager for IBM dashDB, the future of data warehousing.  With over 20 years of analyzing data at The Department of Water and Power, Air Touch Communications, Oracle, and MicroStrategy, Mona decided to grow her career at IBM, a leader in data warehousing and analytics.  Mona received her Bachelor of Science degree in Electrical Engineering from UCLA.

IBM dashDB Local FAQ

When it comes to next-generation data warehousing and data management, the IBM dashDB family offers a range of options that all share a common technology.  dashDB Local is one of the new offerings and this blog provides a series of answers to your questions!  Please feel free to jump in at the bottom in the comments to add your own questions and we will respond.

      1.  What is the dashDB family?
        IBM dashDB is a family of next generation of database and data warehouse technologies that help you respond very quickly to application needs.  Originally in data warehousing, IT professionals assembled hardware software and storage to handle their large data sets for analytics needs.  This was risky, costly and time consuming.  This gave way to the data warehouse appliance that provided an optimized system for data warehousing and analytics.  The appliance was so successful that many consider it to be the backbone of their analytics architecture.But the world of analytics is expanding and new technologies are needed to handle more requests, more data sources and even self-service needs.  Hybrid data architectures are coming to the forefront to handle these increased needs. The dashDB family plays a key role here:

        • dashDB for analytics – as a fully managed cloud data warehouse
        • dashDB Local – as a configured data warehouse delivered via container technology to enable flexible deployment
        • dashDB for transactions – as a fully managed database as a service for transactional workloads.

        This family is designed to help you respond to new needs very quickly.  It also shares a common engine to help you leverage the same skills across different deployment models and application types. For more information on dashDB, visit dashDB.com.

      2. What is dashDB Local?
        dashDB Local is in-memory, columnar data warehousing software, supporting wide range of analytic workloads—from datamarts to enterprise data warehouses. It is deployed using Docker container technology, supporting a software defined environment such as private cloud, virtual private cloud or infrastructure of your choice, thus enabling hybrid Cloud configuration. dashDB Local can be deployed in minutes—making it fast and easy to deliver an auto configured data warehouse with built-in Netezza and Oracle compatibility.
      3. What is Docker?
        Docker is container technology that simplifies packaging and distribution of the software in a complete filesystem that contains everything needed to run: code, runtime, system tools, system libraries – anything that can be installed on a server. This guarantees that the software will always run the same, regardless of its environment.
      4. What is the difference between Docker and VMware?
        VMWare is virtualization technology, while Docker is the container technology used for simplified packaging and distribution of software.   While Docker Container provides operating system-level process isolation, VMware virtualization lets you run multiple virtual machines (VMs) on a single physical server (thus providing H/W level abstraction). Unlike VMware, Docker does not create an entire virtual operating system (thus making it lightweight to deploy and faster to start up compared to VMs). Both technologies can be used together, for example, Docker containers can be created inside VMs to make a solution ultra-portable.
      5. Is dashDB Local generally available?
        Yes it is. You can find a free trial of it at ibm.biz/dashDBLocal.
      6. On which platforms is dashDB Local supported?
        Today, dashDB Local runs on any platform that Docker engine is supported such as Linux, Microsoft Windows, Apple Macintosh, and Cloud providers. More details can be found here and well as on the Docker site.
      7. On what platforms is dashDB Local supported?
        dashDB Local software is packaged and deployed using Docker container technology. Thus, dashDB Local can be installed on any platform where Docker engine client is supported. This includes Windows, Macintosh and variety of Linux platforms. Deploying IBM dashDB Local on Windows or Macintosh requires a Linux VM, in which you run Docker. By downloading the Docker Toolbox, which includes a GUI and a VM, you can accomplish this easily. Please refer to the dashDB Local knowledge center (documentation) for further details.
      8.  Is dashDB Local available on IBM Bluemix Local?
        Bluemix Local is managed by IBM on a clients’ infrastructure. There are no plans to offer dashdB Local on Bluemix Local at this time.
      9.  How long does it take to install dashDB Local?
        dashDB Local is based on Docker container technology, which allows setup and installation in less than 30 minutes. Today, the SMP version or MPP version of dashDB Local can be installed in less than 15 minutes.  This can be done on a range of servers from a simple laptop to a production-grade server. Since various components, such as LDAP security and DSM monitoring, are already bundled into a single container installation, there is a tremendous time savings and a more streamlined and efficient process.
      10. What  components are packaged and installed with  dashDB Local?
        dashDB Local is comprised of the following software components packaged in the Docker container, thus simplifying deployment and speeding up the overall setup. At the core is the dashDB analytics engine, tuned for columnar and in-memory workloads, built-in Netezza and Oracle compatibility, an LDAP server for user access management.  IBM Data Server Manager, which acts as the key monitoring component, is also included to provide key features such as query history monitoring, database performance monitoring and OS level monitoring.
      11. Is dashDB local available outside of Docker public hub?
        Soon, a standalone version of dashDB Local will be available on IBM Fix Central and will  leverage the Docker download command on the host OS. This will remove the dependency of pulling the dashDB Local image from the private, access-controlled repository on the public Docker hub. This will also alleviate challenges where a firewall port to access the public docker hub cannot be opened.
      12. What are the minimum prerequisites to install dashDB Local?
        You can find the documented prerequisites for dashDB Local in the Knowledge Center.  Some of the key requirements focus on Docker client and POSIX-compliant storage files systems, as documented. An additional key requirement revolves around opening access to the following network ports or on the firewall. Ensure that the following ports are opened and defined on all nodes in the cluster and defined in each node’s /etc/hosts file.60000-60024, for database FCM
        25000-25999, for Apache Spark
        50022, for SSH/container OS
        50001, for database connection with SSL
        50000, for database connection without SSL
        9929, for communication tests
        9300, for web console status
        8443, for web console HTTPS
        5000, for System Manager
        389, for LDAP
        22, for SSH/host OS
      13. How does Apache Spark fit into the dashDB Local architecture?
        dashDB Local lets you dramatically modernize your data warehouse solutions with advanced analytics based on Spark. It is installed and configured within the dashDB Local container, thus making it fully integrated, supporting a variety of use cases.Spark applications that process relational data can gain significant performance and operational QoS benefits from deploying and running inside dashDB Local. It enables end-to-end analytic solution creation, from interactive exploration and machine learning experiments; verification of analytic flows; easy operationalization of Spark applications through to hosting Spark applications in a multi-tenant enterprise warehouse system; and integration of Spark applications with other applications via various invocation APIs. It allows you to invoke Spark logic via SQL connections and can land streaming data directly into tables via deployed Spark applications. It can run complex data transformations and feature extractions that cannot be expressed with SQL using integrated Spark.
      14. I have a running dashdb local instance where I’ve set DISABLE_SPARK=‘YES’ in the options file. How can I tell if this option took affect and the actual memory the db is using?This can be confirmed during the startup of dashDB Local container. When Spark is disabled, you will see in the docker start output “Spark support is going to be disabled.” When Spark is enabled you will see”Current spark share : XX% of total memory. “
      15. Is the SPARK setting available as an install time switch, or can I enable and disable spark every time I start the database by changing this?
        The SPARK feature can be enabled/disabled any time. You can change the DISABLE_SPARK setting anytime again and just restart dashDB local in the container (docker exec -it dashdb stop/start).
      16. Is there currently a maximum number of nodes for dashDB Local?
        Currently, one can create up to 24 node MPP cluster in dashDB Local.
      17. Can I upgrade from the GA trial to the production version of dashDB Local?
        Yes, you can upgrade/update the post-GA trial version to a production grade version. Once the product is purchased, a permanent license can be applied to update the license.
      18. How can I get support for dashDB Local ?
        Upon purchase of dashDB Local, clients are entitled to support via email or phone. One can open a PMR with the IBMs support ticketing system. IBM will support the dashDB Local container and all of the components inside it. For Docker specific issues, clients should contact the Docker support team. The IBM support team will assist in identifying the problem and advise accordingly.
      19. If I run into docker issue, would IBM support handle it for me?
        IBM will support the “dashDB Local container”, but not the Docker engine itself. It is the client’s responsibility to subscribe to Docker support.  Customers can leverage Docker CS engine (from Docker) or Open source docker RPMs that come with the Linux distros (such as Red Hat). Docker will provide commercial support only for Docker CS engine and not for Docker RPMs and it is the customer choice of a relevant support path regarding docker components.
      20. How often are dashDB Local updates/fix packs made available?
        dashDB Local is based on an agile development cloud model and the intent is to roll out container updates frequently. This will not only make it easier to stay current with the latest bug fixes, and newest features. The updates are handled via container update process and will take less then 30 minutes, similar to the container setup.
      21. Can dashDB Local be installed on Amazon AWS or Azure/ AWS ?
        dashDB Local can be installed on the infrastructure of your choice, as long as that infrastructure supports Docker container technology. dashDB Local is client-managed and can also be installed in your data center and any virtual private cloud infrastructures such as Amazon AWS EC2 or Microsoft Azure platforms.
      22. What kind of storage is required for dashDB Local?
         dashDB Local requires a posix-compliant clustered file storage system. This is applicable for the MPP cluster only. For a standalone SMP installation, this is not a requirement. You can use standard local disks for a SMP dashDB local node setup.Cluster file system is a file system that is configured in a way to group servers and resources together to have concurrent access to a single file system. The key to a cluster file system is that the cluster appears as a single highly available system to all the end users. This increases the storage utilization rate and can result in high performance.
        Some common examples of clustered file storage system are :
        – VERITAS Cluster File System(VxFS) Sun Solaris, HP/UX
        – Generalized Parallel File System (GPFS) IBM AIX, Linux
        – GFS2 Red Hat only
      23. Is Oracle compatibility available in dashDB local?
        Yes, Oracle compatibility is supported in dashDB Local. You can enable applications that were written for an Oracle database to use dashDB™ Local without having to be rewritten. To use this capability, you must specify that dashDB Local is to run in Oracle compatibility mode prior to initial deployment.Before you begin, the /mnt/clusterfs/ directory must already be created. To perform this task, you need to have root authority on the host system OS. By default, Oracle compatibility mode is not enabled. To enable it, you explicitly make an entry in the /mnt/clusterfs/options file prior to deploying dashDB Local. Run the command below and then follow the normal steps around container deployment/initializationecho “ENABLE_ORACLE_COMPATIBILITY=’YES'” >> /mnt/clusterfs/options

        For more details:
        http://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.doc/admin/local_oracompat.html
        http://www.ibm.com/support/knowledgecenter/SS6NHC/com.ibm.swg.im.dashdb.doc/admin/local_setup.html#setup

 

Three session guides get you started with data warehousing at IBM Insight at World of Watson

Join us October 24 to 27, 2016 in Las Vegas!

by Cindy Russell, IBM Data Warehouse marketing

IBM Insight has been the premiere data management and analytics event for IBM analytics technologies, and 2016 is no exception.  This year, IBM Insight is being hosted along with World of Watson and runs from October 24 to 27, 2016 at the Mandalay Bay in Las Vegas, Nevada.  It includes 1,500 sessions across a range of technologies and features keynotes by IBM President and CEO, Ginni Rometty; Senior Vice President of IBM Analytics, Bob Picciano; and other IBM Analytics and industry leaders.  Every year, we include a little fun as well, and this year the band is Imagine Dragons.

IBM data warehousing sessions will be available across the event as well as in the PureData System for Analytics Enzee Universe (Sunday, October 23).  Below are product-specific quick reference guides that enable you to see at a glance key sessions and activities, then plan your schedule.  Print these guides and take them with you or put the links to them on your phone for reference during the conference.

This year, the Expo floor is called the Cognitive Concourse, and we are located in the Monetizing Data section, Cognitive Cuisine experience area.  We’ll take you on a tour across our data warehousing products and will have some fun as we do it, so please stop by.  There is also a demo room where you can see live demos and engage with our technical experts, as well as a series of hands-on labs that let you experience our products directly.

The IBM Insight at World of Watson main web page is located here.  You can register and then use the agenda builder to create your personalized schedule.

IBM PureData System for Analytics session reference guide

Please find the session quick reference guide for PureData System for Analytics here: ibm.biz/wow_enzee

Enzee Universe is a full day of dedicated PureData System for Analytics / Netezza sessions that is held on Sunday, October 23, 2016.  To register for Enzee Universe, select sessions 3459 and 3461 in the agenda builder tool.  This event is open to any full conference pass holder.

During the regular conference, there are also more than 35 PureData, Netezza, IBM DB2 Analytics Accelerator for z/OS (IDAA) technical sessions across all the conference tracks, as well as hands on labs.  There are several session being presented by IBM clients so you can see how they put PureData System for Analytics to use.  Click the link above to see the details.

IBM dashDB Family session reference guide

Please find the session quick reference guide for the dashDB family here: ibm.biz/wow_dashDB

There are a more than 40 sessions for dashDB, including a “Meet the Family” session that will help you become familiar with new products in this family of modern data management and data warehousing tools.  There is also a “Birds of a Feather” panel discussion on Hybrid Data Warehousing, and one that describes some key use cases for dashDB.  And, you can also see a demo, take in a short theatre session or try out a hands-on lab.

IBM BigInsights, Hadoop and Spark session reference guide

Please find the session quick reference guide for BigInsights, Hadoop and Spark topics here: ibm.biz/wow_biginsights

There are more than 65 sessions related to IBM BigInsights, Hadoop and Spark, with several hands on labs and theatre sessions. There is everything from an Introduction to Data Science to Using Spark for Customer Intelligence Analytics to hybrid cloud data lakes to client stories of how they use these technologies.

Overall, it is an exciting time to be in the data warehousing and analytics space.  This conference represents a great opportunity to build depth on IBM products you already use, learn new data warehousing products, and look across IBM to learn completely new ways to employ analytics—from Watson to Internet of Things and much more.  I hope to see you there.

IBM dashDB Local preview to be featured at Cloud Expo East 2016 in New York

by Cindy Russell, IBM Data Warehouse Marketing

With an expected attendance of over 6,000 from June 7th through 9th, Cloud Expo New York is the one and only original event in which technology vendors can meet to experience and discuss the entire world of the Cloud.

On June 7, 2016, we are thrilled to be rolling out IBM dashDB Local™ as an open preview.  This exciting new IBM hybrid data warehouse offering is part of the dashDB family of data management solutions. dashDB Local delivers dashDB technology via container technology for implementations such as private and virtual private clouds. It is an ideal solution when you want cloud-like simplicity, yet need more control over applications and data. Participants in this preview program have been very enthusiastic about this technology, and you can read more in Mitesh Shah’s blog.

dashDB Local is:

·        Open: Leverage the power of an open warehouse platform

·        Flexible & Hybrid: Easily deploy the right workload to the right platform

·        Fast: Quickly realize business outcomes with advanced processing technologies

·        Simple: Automated management features help to lower the analytics cost model

 

dashDB Local will also be featured in this speaking session at Cloud Expo!

Building Your Hybrid Data Warehouse Solution with dashDB

Matthias Funke, Hybrid Data Warehouse Offering and Strategy Lead at IBM

June 7, 2016 from 11:40 AM – 12:15 PM

 

See the dashDB family in action at IBM Booth #201, the SoftLayer Booth!

cloud expo booth

Register to attend

IBM Booth #201

June 7, 2016

Cloud Expo East 2016

Javits Center, New York, NY

Note: First time attendees will need to create a new account.

As you respond to increasing requests for new analytics, you need fast and flexible technology. Learn how dash DB’s cloud-based managed service and new container-based edition gives you the speed and flexibility that you need.

Want to get started now with dashDB Local? Learn about and download our preview here: ibm.biz/dashDBLocal

IBM dashDB Local opens its preview for data warehousing on private clouds and more!

by Mitesh Shah

Just like in the story of Goldilocks … you may be looking for modern data warehousing that is “just right.”  Your IT strategy may include cloud and you may like the simplicity and scalability benefits of cloud … yet some data and applications may need to stay on-premises for a variety of reasons.  Traditional data warehouses provide essential analytics, yet they may not be right for new types of analytics, data born on the cloud, or simply cannot contain a growing workload of new requests.

IBM dashDB Local is an open preview technology that is designed to give you “just right” cloud-like simplicity and flexibility.  It delivers a configured data warehouse in a Docker container that you can deploy wherever you need it as long Docker is supported on that infrastructure. Often, this is a private cloud, virtual private cloud (AWS/Azure), or other software-defined infrastructure. You gain management simplicity and have an environment that you can control more directly.

DownloadFromDocker
Download and install dashDB Local quickly and simply via Docker container technology.

dashDB Local may be the right choice when you have complex applications that must be readied for cloud, have SLAs or regulations that require data or applications to stay on premises, or you need to address new analytics requests very quickly with easy scale in and out capabilities.

dashDB Local complements the dashDB data warehouse as a service offering that is delivered via IBM Bluemix. Because both products are based on a common database technology, you can move workloads across these editions without costly and complex application change!   This is one example of how we define a hybrid data warehouse and how it can help improve your flexibility over time as your needs evolve.

Since dashDB Local began its closed preview in February of 2016, the team has rallied to bring in a comprehensive set of data warehousing features to this edition of dashDB. We have been listening to the encouraging feedback from our initial preview participants, and as a result, we now have a solution that is open for you to test!

So what are you waiting for?

It’s become commonplace for us to hear feedback that participants can deploy a full MPP data warehouse offering with in-memory processing and columnar capabilities, on the infrastructure of our choice, within 15-20 minutes.

Ours early adopters have been fascinated by the power and ease of deployment for the Docker container.  It’s become commonplace for us to hear feedback that participants can deploy a full MPP data warehouse offering with in-memory processing and columnar capabilities, on the infrastructure of our choice, within 15-20 minutes. One client said that dashDB Local is as easy to deploy and manage as a mobile app! We are thrilled by this type of feedback!

Workload monitoring in dashDB Local delivers elasticity to scale out or in.
Workload monitoring in dashDB Local delivers elasticity to scale out or in.

The open preview (v. 0.5.0) offers extreme scale out and scale in capabilities. Yes, you heard me right. Scale-in provides the elasticity to not tie up your valuable resources beyond the peak workloads. This maximizes return on investment for your variable reporting and analytics solutions.  The open preview will help you test drive the Netezza compatibility (IBM PureData System for Analytics) within dashDB technology, as well as analytics support using RStudio. Automated High Availability is another attractive feature that is provided out-of-the box for you to see and test.

Preview participants have been eager to test drive query performance. One participant says, “We are very impressed with the performance, and within no time we have grown our dataset of 40 million to 200 million records (a few TBs) and the analytics test queries run effortless.” Our participants are leveraging their data center infrastructure whether it’s bare metal or virtualized (VMs) to get started and some have installed it on their laptops to quickly gain an understanding of this preview.

Register for dashDB Local previewFind out how it can be “just right” for you!  Go here to give it a try and get ready to be wowed.  We value and need your feedback to help us prioritize features that are important to your business.  All the best and don’t hesitate to drop me a line to let me know what you think!


About Mitesh,

MiteshMitesh Shah is the product manager for the new dashDB Local data warehousing solution as a software-defined environment (SDE) that can be used on private clouds and platforms that support Docker container technology. He has broad experience around various facets of software development revolving around relational databases and data warehousing technologies.  Throughout his career, Mitesh has enjoyed a focus on helping clients address their data management and solution architecture needs.

IBM Fluid Query 1.7 is Here!

by Doug Dailey

IBM Fluid Query offers a wide range of capabilities to help your business adapt to a hybrid data architecture and more importantly it helps you bridge across “data silos” for deeper insights that leverage more data.   Fluid Query is a standard entitlement included with the Netezza Platform Software suite for PureData for Analytics (formerly Netezza). Fluid Query release 1.7 is now available, and you can learn more about its features below.

Why should you consider Fluid Query?

It offers many possible uses for solving business problems in your business. Here are a few ideas:
• Discover and explore “Day Zero” data landing in your Hadoop environment
• Query data from multiple cross-enterprise repositories to understand relationships
• Access structured data from common sources like Oracle, SQL Server, MySQL, and PostgreSQL
• Query historical data on Hadoop via Hive, BigInsights Big SQL or Impala
• Derive relationships between data residing on Hadoop, the cloud and on-premises
• Offload colder data from PureData System for Analytics to Hadoop to free capacity
• Drive business continuity through low fidelity disaster recovery solution on Hadoop
• Backup your database or a subset of data to Hadoop in an immutable format
• Incrementally feed analytics side-cars residing on Hadoop with dimensional data

By far, the most prominent use for Fluid Query for a data warehouse administrator is that of warehouse augmentation, capacity relief and replicating analytics side-cars for analysts and scientists.

New: Hadoop connector support for Hadoop file formats to increase flexibility

IBM Fluid Query 1.7 ushers in greater flexibility for Hadoop users with support for popular file formats typically used with HDFS.Fluid query 1.7 connector picture These include popular data storage formats like AVRO, Parquet, ORC and RC that are often used to manage bigdata in a Hadoop environment.

Choosing the best format and compression mode can result in drastic differences in performance and storage on disk. A file format that doesn’t support flexible schema evolution can result in a processing penalty when making simple changes to a table. Let’s just  say that if you live in the Hadoop domain, you know exactly what I am speaking of. For instance, if you want to use AVRO, do your tools have readers and writers that are compatible? If you are using IMPALA, do you know that it doesn’t support ORC, or that Hortonworks and Hive-Stinger don’t play well with Parquet? Double check your needs and tool sets before diving into these popular format types.

By providing support for these popular formats,  Fluid Query allows you to import, store, and access this data through local tools and utilities on HDFS. But here is where it gets interesting in Fluid Query 1.7: you can also query data in these formats through the Hadoop connector provided with IBM Fluid Query, without any change to your SQL!

New: Robust connector templates

In addition, Fluid Query 1.7 now makes available a more robust set of connector templates that are designed to help you jump start use of Fluid Query. You may recall we provided support for a generic connector in our prior release that allows you to configure and connect to any structured data store via JDBC. We are offering pre-defined templates with the 1.7 release so you can get up and running more quickly. In cases where there are differences in user data type mapping, we also provide mapping files to simplify access.  If you have your own favorite database, you can use our generic connector, along with any of the provided templates as a basis for building a new connector for your specific needs. There are templates for Oracle, Teradata, SQL Server, MySQL, PostgreSQL, Informix, and MapR for Hive.

Again, the primary focus for Fluid Query is to deliver open data access across your ecosystem. Whether the data resides on disk, in-memory, in the Cloud or on Hadoop, we strive to enable your business to be open for data. We recognize that you are up against significant challenges in meeting demands of the business and marketplace, with one of the top priorities around access and federation.

New: Data movement advances

Moving data is not the best choice. Businesses spend quite a bit of effort ingesting data, staging the data, scrubbing, prepping and scoring the data for consumption for business users. This is costly process. As we move closer and closer to virtualization, the goal is to move the smallest amount of data possible, while you access and query only the data you need. So not only is access paramount, but your knowledge of the data in your environment is crucial to efficiently using it.

Fluid Query does offer data movement capability through what we call Fast Data Movement. Focusing on the pipe between PDA and Hadoop, we offer a high speed transfer tool that allows you to transfer data between these two environments very efficiently and securely. You have control over the security, compression, format and where clause (DB, table, filtered data). A key benefit is our ability to transfer data in our proprietary binary format. This enables orders of magnitude performance over Sqoop, when you do have to move data.

Fluid Query 1.7 also offers some additional benefits:
• Kerberos support for our generic database connector
• Support for BigInsights Big SQL during import (automatically synchronizes Hive and Big SQL on import)
• Varchar and String mapping improvements
• Import of nz.fq.table parameter now supports a combination of multiple schemas and tables
• Improved date handling
• Improved validation for NPS and Hadoop environment (connectors and import/export)
• Support for BigInsights 4.1 and Cloudera 5.5.1
• A new Best Practices User Guide, plus two new Tutorials

You can download this from IBM’s Fix Central or the Netezza Developer’s Network for use with the Netezza Emulator through our non-warranted software.

Picture1

Take a test drive today!

About Doug,
Doug Daily
Doug has over 20 years combined technical & management experience in the software industry with emphasis in customer service and more recently product management.He is currently part of a highly motivated product management team that is both inspired by and passionate about the IBM PureData System for Analytics product portfolio.